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Frequency shifts in parametrically enhanced low-field MR detection
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Abstract

A high-amplitude, high-frequency readout field has previously been proposed for use with low-field MR. Because the resulting

modulation sidebands are at higher frequencies than the low-field steady precession, improved detection sensitivity results. However,

if the ac readout field is inhomogeneous, it will necessarily have transverse components resulting in frequency shifts and broadening

of the MR signal. Numerical solutions of Bloch�s equations are compared to the Bloch–Siegert result to assess the size of the

frequency shifts. A formula is derived by the average Hamiltonian method and provides an excellent fit to the numerically obtained

shifts.

� 2004 Elsevier Inc. All rights reserved.
1. Introduction

The sensitivity of magnetic resonance is predicted [1]

to vary as B7=4
0 , where B0 is the static field strength. One

power of B0 results from the thermal equilibrium spin

polarization, in the nearly always relevant high-tem-

perature approximation [2]. The remaining B3=4
0 depen-

dence results from the use of magnetic induction to

generate a voltage in the receiving coil proportional to

the time derivative of the magnetization. The exact de-

pendence of this term depends on how the coil Q varies

with frequency f0, where f0 ¼ cB0=2p.
Despite the low sensitivity, there are many applica-

tions and potential applications for low-field NMR [3,4].

These include oil-well logging [5], mapping of the earth�s
magnetic field, and detection of water buried in a

structure such as a concrete bridge. In all of these, it is

impractical to immerse the entire ‘‘sample’’ in a uniform

static field of high strength. Another application is low-

field MRI [6], where the use of a homogeneous but weak

field B0 essentially eliminates effects of the sample�s
magnetic susceptibility variations [7] and substantially

reduces the magnet�s cost.
One route to higher sensitivity in low-field MR is the

use of prepolarized spins. This may take the form of

Overhauser enhancement of nuclear polarization [8] by
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saturation of dissolved electron spins. Optically

pumped (hyperpolarized) gases can be imaged at low

fields with reasonable sensitivity [9,10]. Another tech-

nique uses a prepolarizing field pulse of duration one

or two times T1 to align the spins for subsequent

low-field MR or MRI [6,11,12]. We note that the first

observation of NMR in the earth�s field used a pre-
polarizing pulsed field [13]. All these methods increase

the nuclear spin polarization above the equilibrium

value in the low field.

In low field, the detection sensitivity still suffers be-

cause of the low-readout frequency, f0 ¼ cB0=2p. Ma-

covski and Conolly [11] proposed using an additional ac

readout field of frequency f , parallel to B0, to increase

the detection frequency and, as a result, the sensitivity.
We consider here the most practical scheme suggested,

using a sinusoidal field B1,

B1ðtÞ ¼ B1p cos 2pft; ð1Þ

where B1p is the peak amplitude. We note this field B1 is

a modulation field parallel to B0 and is distinct from any

possible third field intended to nutate the spins. Spin

magnetization M will precess about the z-axis under the

combined effects of B0 and B1ðtÞ. For spins initially along

the x-axis (/ ¼ 0 at t ¼ 0)

/ðtÞ ¼
Z t

t0¼0

cðB0 þ B1ðt0ÞÞdt0 ¼ cB0t þ
cB1p

2pf

� �
sin 2pft:

ð2Þ
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Fig. 1. (A) Spin magnetization, represented as a vector-dot, precessing

about z-axis under combined effects of a weak static field B0 (with

f0 ¼ cB0=2p) and a strong ac field B1 at frequency f , with f ¼ 10f0.
Both B0 and B1 are along the z-axis. The magnetization starts along the

x-axis; the length of the vector is increased with time for display

purposes. The peak amplitude of B1 corresponds to modulation index

m ¼ 0:7; m is the peak phase modulation. (B) Signal voltage induced in

detection coil along y-axis, proportional to dMy=dt. As in (A), one

cycle of precession about B0 is shown, corresponding to 10 cycles of

modulation frequency f . The left-hand edge is at the initial time (dot in

(A)). In addition to the main components at f � f0 (n ¼ �1 sidebands)

with the evident beat pattern, some signal at f0 is present. Signal at

� 2f is apparent near the nodes in the beat pattern.
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We note that the problem is described by three fre-
quencies: the static precession frequency f0 ¼ cB0=2p,
the frequency f of the ac field B1, and f1 � cB1p=2p
which is the peak amplitude of B1 in spin-frequency

units. Eq. (2) describes [14] frequency modulation (FM)

with a modulation index m

m � cB1p=2pf ¼ f1=f : ð3Þ
The MR signal is expði/ðtÞÞ and can be expressed as a

frequency spectrum consisting of a centerband at f0 and
sidebands at f0 � nf where n is integer [14–16]. For

f � f0, all of these sidebands are at higher frequencies

(in magnitude) than f0, offering the possibility of in-
creased detection sensitivity.

The spin magnetization M, oscillating back and forth

about B1 while it slowly precesses about B0, is sketched

in Fig. 1A. There the field B1 is parallel to B0 and the z-

axis and f ¼ 10f0; the sketch presents one full cycle of

precession at f0. The phase / is taken from Eq. (2). A

pick-up coil along the y-axis will detect a voltage pro-

portional to dMy=dt, as displayed in Fig. 1B. There,
components near the pump frequency f appear, with

beating evident between the n ¼ 1 and )1 sidebands. A

weak component is present at the unmodulated fre-

quency f0 and n ¼ �2 sidebands at frequencies near 2f
are evident near the nodes in the beat pattern.

We consider use of the first sidebands only ðn ¼ �1Þ
at frequencies f � f0 and f þ f0. Their amplitudes are

maximized by adjusting the amplitude B1p to yield
[11,14] m ¼ 1:85; this corresponds to a peak-to-peak

rotation of the magnetizationM through an angle of 2m,
somewhat greater than p radians. The sidebands can be

detected in a pick-up coil, amplified, and heterodyned

against a reference at f , returning a signal at the dif-

ference frequency, f0. Thus the use of the ac field does

not shift or broaden the NMR signal; the frequency of

the returned signal does not depend on the frequency or
amplitude of the ac field. Because the field B1 acts on the

frequency (a ‘‘parameter’’ of the spins) and does not

drive (nutate) the spins, we refer to this method as

parametrically enhanced MR detection. We note that

any leakage of the B1 ac field at frequency f into the

detection pick-up coil produces a dc output from the

heterodyne mixer and is easily removed, putting aside

issues of dynamic range. Thus, the weak field B0 plays
an important role, separating the modulation sideband

signals from the pump leakage by their frequencies.

The potential advantage of parametrically enhanced

MR detection, compared to simply using a larger static

field B0, is that the ac pumping field B1 need not be

spatially uniform (while the homogeneity of B0 directly

determines the linewidth). A variation in B1p away from

its optimum value corresponding to m ¼ 1:85 simply
results in a slight sensitivity decrease, without frequency

broadening. In general, it is much more practical to

provide a large but inhomogeneous ac field B1 with a
small and uniform B0 than to provide a large and uni-

form B0. A homogeneous pumping field would be syn-

onymous with much more required power, because it

would involve a physically larger coil with a larger

volume pumping field. We note that parametrically en-

hanced detection has not been implemented; in MRI of

humans, a large-amplitude high-frequency pump field
may dissipate excessive heat in the subject. We note that

the power dissipation will vary as f 4 for a fixed modu-

lation index m, because the amplitude B1p and f both
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scale as f and dissipated power is quadratic in the
induced currents. Thus, concerns of power dissipated

into the subject will limit the frequency (and sensitivity

improvement) of parametrically enhanced MR in

humans.

The above remarks apply for the case of B1 directed

along the z-axis, parallel to B0. However, if B1 is not

spatially uniform, it cannot be everywhere parallel to B0:

Maxwell�s equations dictate [17] that non-uniform
magnetic fields have field lines that converge and diverge

by changing direction. Now, it is well-known that

off-resonance rotating and oscillating fields with com-

ponents perpendicular to B0 generate Bloch–Siegert

frequency shifts [8,18]. In the present context of an in-

homogeneous pumping field B1, such shifts will generate

line broadening of the NMR signal. This broadening

will reduce the signal-to-noise (S/N) and may negate the
expected sensitivity increase. Thus, experimental success

of parametrically enhanced NMR detection requires a

compromise: if the B1 pump field is insufficiently ho-

mogeneous, line broadening and decreased S/N will

occur; if B1 is more than adequately uniform, there will

be no further decrease in linewidth and no further in-

crease in S/N, but there will be a large increase in the

power required to drive the pump field-coil. We note this
power is expected to be substantial. This is the issue

addressed here—how large are the frequency shifts in

parametrically enhanced MR detection? The question is

addressed by numerical solutions of Bloch�s free-pre-

cession equations and comparison to the Bloch–Siegert

result. A nearly exact result for f � f0 is derived.
2. Method

Bloch�s free-precession equations, _M ¼ cðM� BÞ
[2,8] were integrated using the program Matlab on a

personal computer. The magnetic field was taken to be

the sum of B0 in the z-direction and the oscillating field

B1 of Eq. (1) in the x–z plane, at angle h to the z-axis.

Exactly one cycle of the oscillating field B1 was divided
into 1000 time steps for Runge–Kutta integration; we

verified that use of more steps did not change the results.

The integration yielded an output matrix specifying the

spin magnetization M after one cycle, in terms of the

initial magnetization M0. The matrix is a rotation op-

erator, because it is the result of many (e.g., 1000)

smaller rotations in sequence. The rotation axis of the

operator and its rotation angle a (in radians) were
found. Thus, the overall frequency fs of the spin motion

under the combined effects of B0 and B1 is

fs ¼ a=ð2p=f Þ: ð4Þ
The results are reported in terms of the frequency shift

Df � fs � f0. We note the modulation index m is

m ¼ f1=f .
The numerical results are compared to the well-known
Bloch–Siegert result. For a rotating field at frequency

f with magnitude f1, the Bloch–Siegert frequency shift

Df away from the free precession frequency f0 is in general
[8,18]

Df ¼ f 2
1

2ðf0 � f Þ : ð5Þ

This result holds for weak rotating fields, f1 � jf0 � f j.
In the present problem, we treat the oscillating field in
the x-direction as two counter-rotating fields at fre-

quencies f and �f , each with magnitude f1 sin h=2. Thus
the sum of the shifts from each rotating field is

Df ¼ f 2
1 sin

2 h
8

1

f0 � f

�
þ 1

f0 þ f

�
: ð6Þ

To obtain a useful sensitivity enhancement one must

have f � f0, so the two terms in parentheses have op-

posite signs. Adding, one obtains

Df ¼ f 2
1 f0 sin

2 h
4ðf 2

0 � f 2Þ ffi
�f 2

1 f0 sin
2 h

4f 2
¼ �m2f0 sin

2 h
4

; ð7Þ

this is the result for simply adding the Bloch–Siegert

shifts from the two rotating fields. We note that, for

large angles h and modulation indices mJ 1, the as-

sumption used in obtaining Eq. (5) (that the RF field

strength is small compared to the resonance offset) is not
valid.
3. Results

Numerical results for the case of B1 not parallel to B0

appear in Fig. 2. The parameters were chosen to be

relevant to detection in the earth�s field (f0 ¼ 2000Hz)
with a substantially larger pump frequency (f ¼
100 kHz) to yield a significant boost in detection sensi-

tivity. The peak amplitude was selected to yield a large

modulation index for good sensitivity (f1 ¼ 110 kHz, so

m ¼ 1:1). In Fig. 2A, the shift Df is reported as a

function of the tilt angle h of B1. In agreement with Eq.

(7), Df is negative and varies nearly as sin2 h. In Fig. 2B,

the shift varies nearly as f 2
1 , in agreement with formula

(7).

In both Figs. 2A and B, the agreement with the

prediction is good for small shifts (jDf j < 100Hz), but

the numerical result becomes smaller in magnitude than

Eq. (7) result for larger shifts. In Fig. 2C, the shift Df is

found to vary linearly with f0, in agreement with the

prediction of Eq. (7). But the magnitude of the slope is

smaller than predicted, similar to the deviations in Figs.
2A and B.

For the values in Fig. 2A, which would yield a very

substantial factor of 50 (that is, f =f0) increase in de-

tection frequency, the calculated frequency shifts are

reasonably approximated by Eq. (7). The shift remains



Fig. 3. Frequency shift Df from numerical integration of Bloch�s
equations as a function of the transverse field peak amplitude f1 sin h,
for five values of tilt angle h. At small h, the longitudinal oscillating

field f1 cos h becomes large and suppresses the shift. The curve marked

‘‘Theory’’ is the result of Eq. (7).

Fig. 2. Frequency shift Df ¼ fs � f0 resulting from components of the

oscillating field B1 perpendicular to the static field B0. In each case,

‘‘Theory’’ reports the predictions of Eq. (7) and ‘‘Sim’’ reports the

results of numerical simulation (integration) of Bloch�s precession

equations. (A) Df as function of tilt angle h, compared to sin2 h pre-

diction. (B) Df as function of oscillating field amplitude f1; the theory
prediction varies as f 2

1 . (C) Df variation with f0; here the theory pre-

diction is linear.
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smaller than 100Hz (5% of f0) for all tilt angles less than
27� and smaller than 25Hz (1.25%) for angles below 13�.
Thus, a reasonably inhomogeneous pump field can be

used, depending on the application (low-field spectros-

copy, detection of buried water, etc.). We note that the

same coil could be used to provide a prepolarizing field

pulse and later provide the ac parametric pump field; in

neither case is field uniformity crucial.

An interesting issue is the extent to which the longi-

tudinal component of the oscillating field B1 changes the
frequency shift arising from the transverse components.

The shifts for five tilt angles h are compared in Fig. 3, all

with the same magnitudes of transverse field compo-

nents, f1 sin h. In one case h ¼ 90�, so the longitudinal

component is zero; at the other extreme, h ¼ 30� so the

longitudinal component is
ffiffiffi
3

p
times as large as the

transverse. At small magnitudes of transverse oscillating

fields, the shifts are all nearly the same, demonstrating

that the oscillating longitudinal field does not much

modify the frequency shift. But at small angles h and at

large values of the transverse field f1 sin h, that is

f1 sin hJ f , the strong longitudinal field reduces the

magnitude of the frequency shift. Qualitatively, the ra-

pid precession about the strong longitudinal component
of B1 provides some motional averaging (reduction) of

the effects of the weaker transverse fields.

Several discussions of Bloch–Siegert frequency shifts

have treated fields of amplitude not small compared to

the frequency offsets [19–21]. As derived in Appendix A,

for f � f0 the spin frequency fs taken from Eq. (4) is

given by

fs ¼ f0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 hþ sin2 hJ 2

0ðf1=f Þ

q
; ð8Þ

where J0 is the zeroth order Bessel function. This for-

mula correctly yields fs ¼ f0 in the case f1 ¼ 0, as J0ð0Þ is
then unity. An interesting limit (but not relevant to

practical use of parametrically enhanced detection) is
extremely large modulation indices, m ¼ f1=f � 1.

Since J0 goes to zero in this limit, fs becomes f0 cos h.
The implication is clear—only the component of B0

along the (tilted) oscillating field B1 is important in this

limit. In the limit of m ¼ f1=f � 1, the Bessel function

and square root can be expanded to yield the same result

as approximation (7).

Numerical results for spin precession frequency fs are
presented in Fig. 4 over a wide range of modulation

indices m and tilt angles h. The predictions of Eq. (8) are



Fig. 4. Spin precession frequency fs as a function of the modulation

index m ¼ f1=f for six values of the tilt angle h. For all, f0 is 2000Hz

and the frequency of the tilted field is 100 kHz. The solid black curves

are from numerical (exact) calculations; the open circles are from

formula (8).
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also displayed and show excellent agreement, with no

adjustable parameters. Thus, formula (8) is applicable to

much larger values of m and tilt angle h than is the

simpler approximation (7). Is Eq. (8) exact? No; when f0
is no longer small compared to f , substantial differences
between (8) and the numerical results appear (data not

shown). Indeed, the derivation of Eq. (8) by the average

Hamiltonian method relies on f � f0. But parametri-

cally enhanced NMR with useful sensitivity increase is

limited to f � f0, where formula (8) works exceedingly

well.
4. Conclusions

There are many MR applications in which it is im-

practical to provide an intense and uniform static field

throughout the sample. Low-field MR requires only a

weak uniform field, but the sensitivity is lower at low-

field strengths. Dynamically polarized spins or the use of

a prepolarizing field pulse can increase the sensitivity of
low-field MR. Further, use of a high-amplitude, high-

frequency readout field (parametrically enhanced de-

tection) can increase the frequency of the spin signal and

the detection sensitivity.

Transverse components will result from inhomoge-

neity of the ac readout field and will generate frequency

shifts and broadenings, leading to reduced detection

sensitivity. Such shifts have been calculated here by
numerical integration of the free-precession equations of

motion for spin magnetization. The frequency shift is

found to substantially agree with a simple prediction

based on the Bloch–Siegert effect. Specifically, the shift

is to lower frequency, varies with the field tilt-angle h
nearly as sin2 h, varies approximately as the square of

the field amplitude f1, and is linearly proportional to the

static precession frequency f0. In general, the naı̈ve
formula based on Bloch–Siegert shifts from two count-
er-rotating field components overestimates the actual

shift magnitudes. A simple formula is derived that

provides excellent agreement with no adjustable

parameters to the numerical (exact) results.

For values of the parameters describing a typical

application (earth�s field NMR) with a substantial boost

in detection frequency (factor of 50), the shifts

are modest (<5% of f0) provided the tilt angle remains
below 27�.
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Appendix A. Average hamiltonian derivation of spin

frequency

Here we choose the z-axis along the oscillating field

B1 and the x-axis perpendicular to z in the B0 � B1

plane. The instantaneous classical Hamiltonian is
H ¼ �M 	 B, which becomes

H ¼ �MzðB1p cosxt þ B0 cos hÞ �MxB0 sin h; ðA:1Þ
whereM is the vector spin magnetization and Mz and Mx

are components of M; x � 2pf . To lowest order in the

average Hamiltonian method, the quantities in (A.1) are

to be evaluated after time-averaging over a complete

cycle of the oscillatory field. In this averaging, only the

motion driven by the oscillating field is considered. We

note that the average Hamiltonian method depends on

the precession angle about B0 being small during one

period of the oscillating pump field, so f0 � f . Thus, Mz

is constant and Mx will be partially averaged by pre-

cession about B1 to become Mx. Also the average of

cosxt is zero, so the average Hamiltonian becomes

H ¼ �MzB0 cos h�MxB0 sin h: ðA:2Þ
To find Mx we write

MþðtÞ ¼ Mþ0e
i/ ¼ Mþ0e

im sinxt; ðA:3Þ
following Eq. (2). The standard Bessel expansion for the

exponential yields for the complex magnetization

Mþ � Mx þ iMy ,

MþðtÞ ¼ Mþ0

X
n

JnðmÞeinxt; ðA:4Þ

where n runs over all integers, �1 to 1. The time

average of the above yields only the n ¼ 0 term

Mþ ¼ Mþ0J0ðmÞ; ðA:5Þ
the real part of which is

Mx ¼ Mx0J0ðmÞ: ðA:6Þ
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Thus the average Hamiltonian of (A.2) becomes

H ¼ �MzB0 cos h�Mx0B0 sin hJ0ðmÞ; ðA:7Þ
this is simply the Hamiltonian of magnetization M in a

hypothetical field B0

B0 ¼ ẑðB0 cos hÞ þ x̂ðB0 sin hJ0ðmÞÞ: ðA:8Þ
Thus the spin precession frequency fs is cjB0j=2p or

fs ¼ ðc=2pÞB0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 hþ sin2 hJ 2

0ðmÞ

q
; ðA:9Þ

by Pythagoras� theorem; this result appears in the text as

Eq. (8).
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